Model Configuration
Configuring an NLP model source can be done by specifying a mapping in the RIME JSON
configuration file, under the model_info argument. Models can be defined via a custom
model.py file or through a native integration with Hugging Face.
Template
{
    "model_info": {
        "path": "/path/to/model.py"        (REQUIRED)
    }
    ...
}
Arguments
path: string, requiredPath to Python model file. For instructions on how to create this Python model file, please see Specify a Model.
Hugging Face Model
Note: this is only supported for the Text Classification and Natural Language Inference tasks.
{
    "model_info": {
        "type": "huggingface_classification",      (REQUIRED)
        "model_uri": "path",                       (REQUIRED)
        "tokenizer_uri": null,
        "model_max_length": null,
    },
    ...
}
Arguments
model_uri: string, requiredThe pretrained model name or path used to load a pretrained Hugging Face model from disk or from the model hub.
tokenizer_uri: string or null, default =nullThe pretrained tokenizer name or path used to load the tokenizer from disk or from the model hub. If
null, RIME defaults to loading from the providedmodel_uri.model_max_length: int or null, default =nullThe maximum sequence length (in tokens) supported by the model. If
null, RIME infers the maximum length from the pretrained model and tokenizer.